

Model-Based Rigorous Uncertainty Quantification in Complex Systems

M. Ortiz
California Institute of Technology

COMPLAS 2011 Barcelona, September 9, 2011

ASC/PSAAP Centers

PSAAP



THE UNIVERSITY TEXAS AT AUSTIN-

Caltech Center Team

Experimental

- A. Rosakis
- G. Ravichandran
- M. Adams
- J. Mihaly
- J. Brown
- L. Bodelot
- A. Kidane
- K. John

Software

- M. Aivazis
- M. Stalzer
- M. McKerns
- S. Brunett
- J. Cummings
- J. Lindheim
- S. Lombeyda
- B. Li
- L. Strand

Management

- M. Ortiz
- M. Stalzer

UQ

- H. Owhadi
- T. J. Sullivan
- M. McKerns
- B. Li
- C. Scovel (LANL)

Fluids

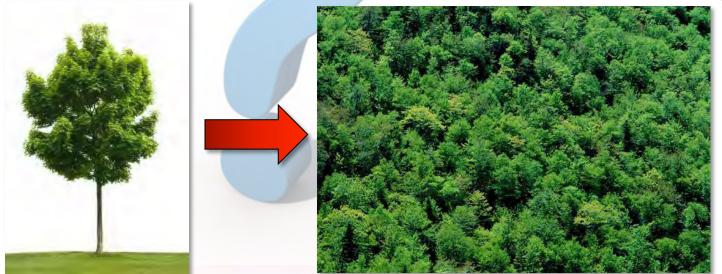
- D. Meiron
- D. Pullin
- P. Barton
- J. Cummings
- G. Ward
- A. L. Ortega

Solids

- M. Ortiz
- K. Bhattacharya
- W. A. Goddard III
- A van de Walle
- A. Pandolfi
- A. Jaramillo-Botero
- J. Amelang
- L. Djodom Fokuoa
- A. Kowalski
- X. Wang
- A. Richards
- L. Miljacic
- B. Li
- A. Bompadre
- S. Demers
- P. Theofanis
- J. Tahir-Kheli
- P. Cesana
- L. Perotti
- D. Kochmann

The Quantification of Margins and Uncertainties (QMU) Paradigm

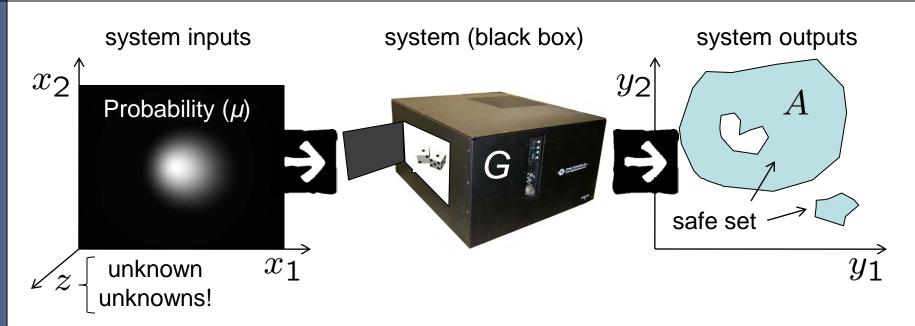
- Aim: Predict mean performance and uncertainty in the behavior of complex physical/engineered systems
- Paradigm shift in experimental science, modeling and simulation, scientific computing (predictive science):
 - Deterministic → Non-deterministic systems
 - Mean performance → Mean performance + Uncertainty



Old single-calculation paradigm

New ensemble-of-calculations paradigm (QMU)

QMU - Certification view



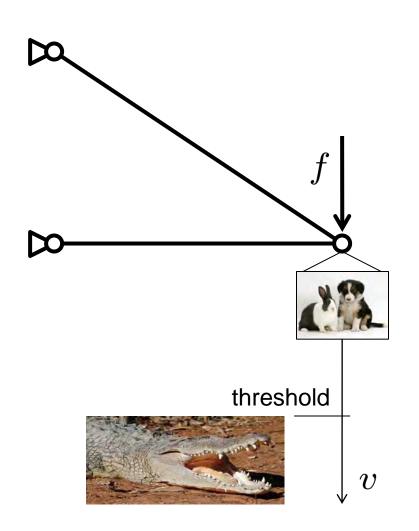
Certification: PoF of the system below tolerance,

$$\mathbb{P}[\mathsf{failure}] = \mathbb{P}[y \not\in A] \le \epsilon$$

Exact probability of failure:

$$\mathbb{P}[\text{failure}] = \int \left\{ \begin{array}{l} \mathsf{0}, & \text{if } G(x) \in A \\ \mathsf{1}, & \text{if } G(x) \not\in A \end{array} \right\}^{\nu} d\mu(x)$$

QMU – A simple truss example

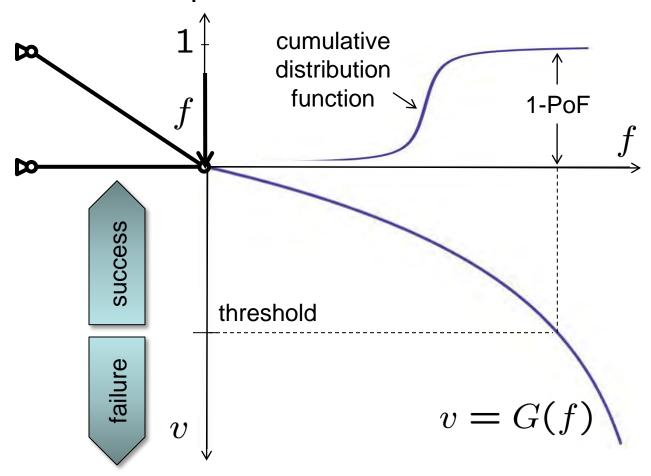


- System input: Applied force (f)
- System output: Tip deflection (v)
- Response function (G): Energy minimization, static equilibrium
- Model (F): Energy minimization with approximate strain-energy density function W
- Failure criterion: v > threshold
- To compute: $\mathbb{P}[failure] =$

$$\int \left\{ \begin{array}{ll} \mathsf{0}, & \text{if } v < v_{\max} \\ \mathsf{1}, & \text{if } v \geq v_{\max} \end{array} \right\} d\mu(f)$$

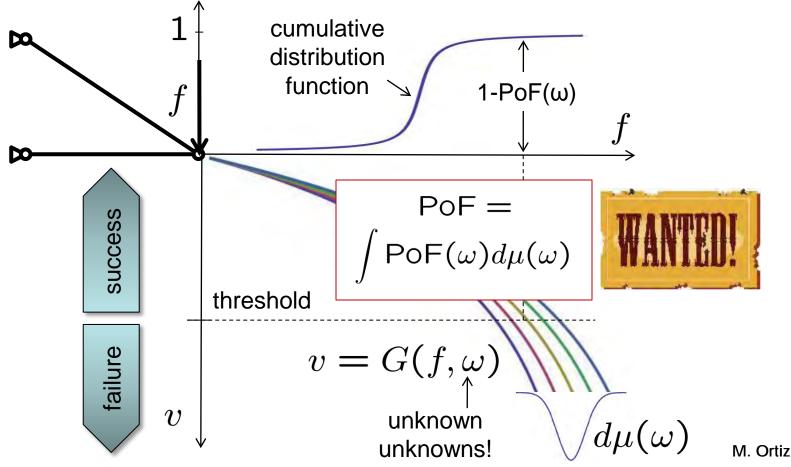
QMU – A simple truss example

Assume: Deterministic response, known probability distribution of inputs

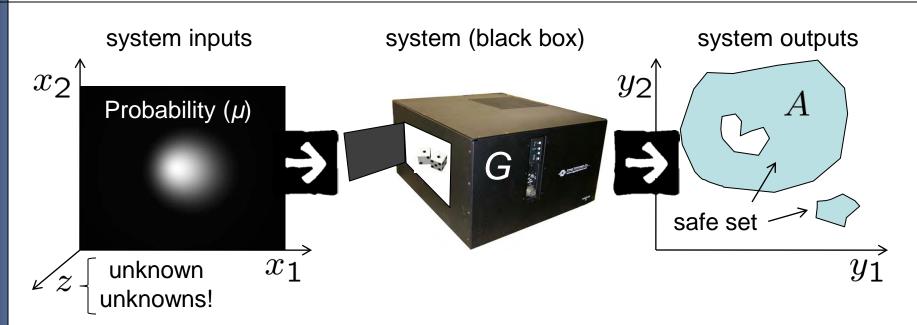


QMU – A simple truss example

Assume: Stochastic response function, known probability distribution of inputs



QMU - Certification view



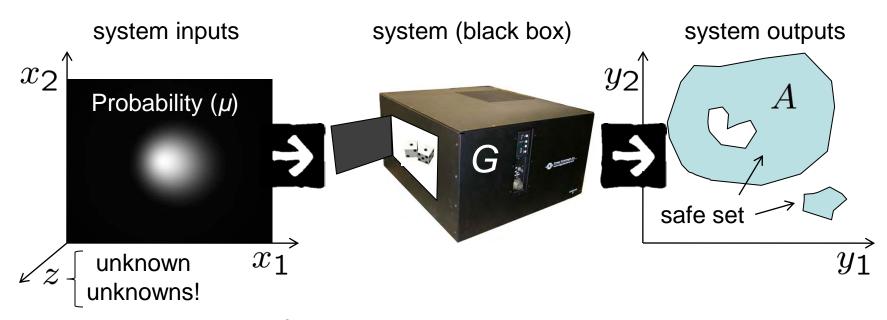
Certification: PoF of the system below tolerance,

$$\mathbb{P}[\mathsf{failure}] = \mathbb{P}[y \not\in A] \le \epsilon$$

Exact probability of failure:

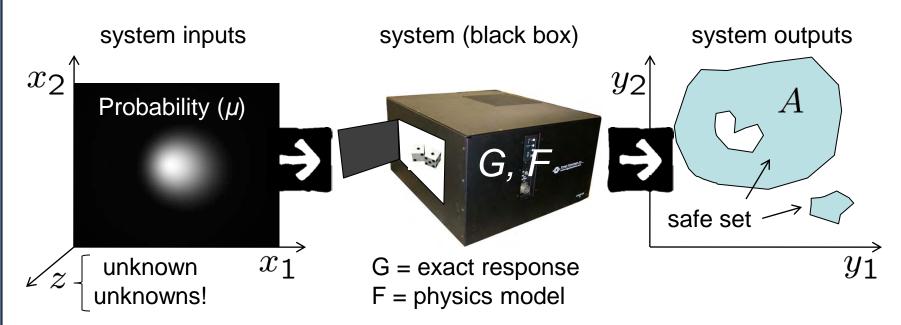
$$\mathbb{P}[\text{failure}] = \int \left\{ \begin{array}{l} 0, & \text{if } G(x) \in A \\ 1, & \text{if } G(x) \not\in A \end{array} \right\} \stackrel{\triangleright}{d\mu}(x)$$

QMU – Essential difficulties



- Input space of high dimension, unknown unknowns
- Probability distribution of inputs not known in general
- System response stochastic, not known in general
- Models are inaccurate, partially verified & validated
- System performance cannot be tested on demand
- Legacy data incomplete, inconsistent, and noisy...

QMU - Conservative certification



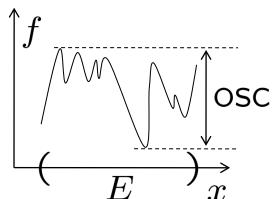
 Conservative certification: Upper bound on the PoF of the system below tolerance,

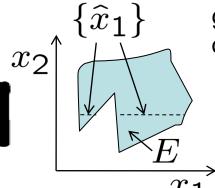
$$\mathbb{P}[\text{failure}] = \mathbb{P}[y \not\in A] \leq \text{upper bound} \leq \epsilon$$

Objective: Obtain tight (optimal?) PoF upper bounds
 from all known information about the system...

Example – McDiarmid's inequality

Function diameters:





computation requires global optimization over parameter space!

 $|f|_D$

One-dimensional diameter

Multidimensional diameter

• McDiarmid's CoM inequality: $\mathbb{P}[\text{failure}] \leq e^{-2(M/U)^2}$

 $M \equiv \text{margin} = \text{mean output} - \text{threshold} - \text{margin hit}$

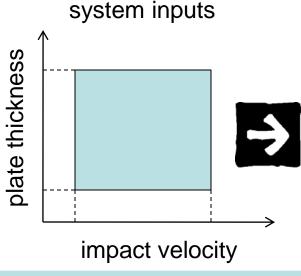
 $U \equiv \text{uncertainty} = \text{predicted} + \text{modeling} + \text{scatter}$

Lucas, Owhadi & MO CMAME (2008)

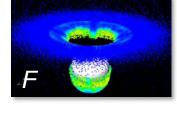
 $|F|_D$ model diameter

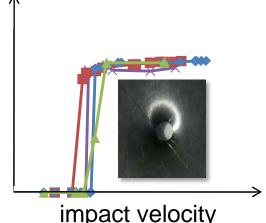
 $|F - G|_D$ modeling error diameter

Example: Certifying threat lethality



system (gas gun)





system outputs

Model diameter $|F|_D$ 6.24 mm²

Modeling error $|F-G|_D$ 5.41 mm²

Experimental scatter 2σ 0.50 mm²

Uncertainty $|F|_D + |F-G|_D + 2\sigma$ 11.65 mm²

Empirical mean <G> 47.77 mm²

Margin hit α (ϵ '=0.1%) 4.17 mm²

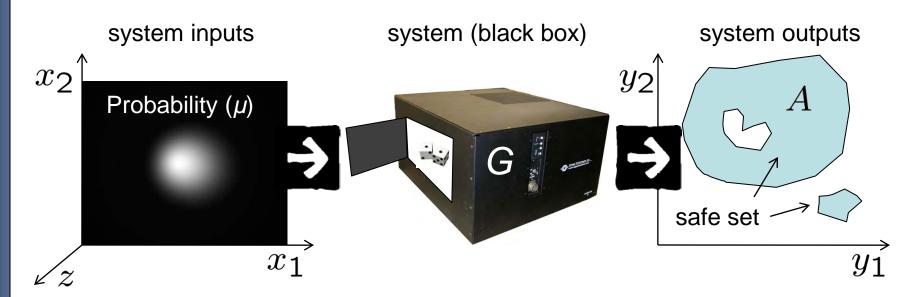
Confidence factor M/U 3.59

- System certified with very high confidence (PoF < 0.1%)
- Total number of tests required ~ 50
- Total number of calculations ~ 2000

QMU - Conservative certification

- Rigorous and conservative certification can be achieved by means of PoF upper bounds!
- PoF bounds 'fold in' all information available on the system (experimental data, V&V'd physics models...)
- PoF bounds are similar in spirit to bounds on effective moduli of elastic composites (which cannot be obtained exactly in general from existing data on the composite)
- However: Bounds can be suboptimal (e.g., Voigt, Reuss...) and result in excessive conservatism
- Question: Is it possible to compute optimal PoF bounds?
 (for given information about the system)
- Optimal Uncertainty Quantification! (OUQ)

Optimal Uncertainty Quantification



- Wanted: $\mathbb{P}[\text{failure}] = \mathbb{E}_{\mu}[\{G \in A\}]$
- Assume information about (μ, G) : Data, models...
- Admissible set: $\mathcal{A} = \{(\mu, G) \text{ compatible with info}\}$
- Optimal PoF bounds given A:

$$\inf_{(\mu,G)\in\mathcal{A}}\mathbb{E}_{\mu}(\{G\in A\})\leq \mathsf{PoF}\leq \sup_{(\mu,G)\in\mathcal{A}}\mathbb{E}_{\mu}(\{G\in A\})$$

OUQ – The Reduction Theorem

Theorem [Owhadi et al. (2011)] Suppose that

$$\mathcal{A} = \left\{ (\mu, G) \, \middle| \begin{array}{l} \langle \text{some conditions on } G \text{ alone} \rangle \\ \mathbb{E}_{\mu}[\varphi_1] \leq 0, \dots \mathbb{E}_{\mu}[\varphi_n] \leq 0 \end{array} \right\}. \text{ Let:}$$

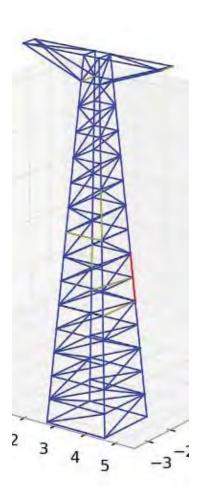
$$\mathcal{A}_{\text{red}} = \left\{ (\mu, G) \in \mathcal{A} \middle| \mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}, \ \alpha_i \ge 0, \ \sum_{i=1}^{n} \alpha_i = 1 \right\}$$

Then:
$$\inf_{(\mu,G)\in\mathcal{A}}\mathbb{E}_{\mu}(\{G\in A\}) = \inf_{(\mu,G)\underline{\in}\mathcal{A}_{\mathrm{red}}}\mathbb{E}_{\mu}(\{G\in A\})$$

$$\sup_{(\mu,G)\in\mathcal{A}}\mathbb{E}_{\mu}(\{G\in A\}) = \sup_{(\mu,G)\in\mathcal{A}_{\mathrm{red}}}\mathbb{E}_{\mu}(\{G\in A\})$$

• OUQ problem is reduced to optimization over finitedimensional space of measures: Program feasible!_{M. Ortiz}

Simulation of seismic waves from rupture initiating at Parkfield, central California, and propagating over Los Angeles basin (http://krishnan.caltech.edu/krishnan/res.html)



3D truss structure of power-line tower

Ground motion acceleration:

$$\ddot{u}_0(t) = (\psi * s)(t)$$

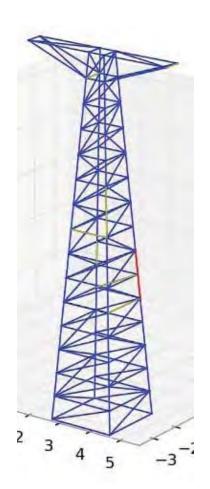
where: $s(t) \equiv$ Source activity $\psi(t) \equiv$ Transfer function

Structural response:

$$M\ddot{u} + C\dot{u} + Ku = f(t) - MT\ddot{u}_0(t)$$

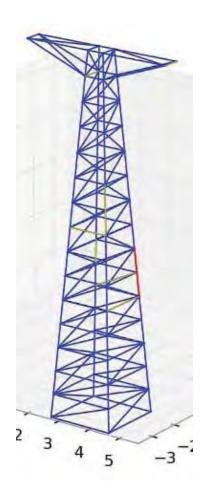
• Failure criterion: $G \leq 0$, where

$$G = \min_{i \in \text{ members}} \left\{ \sigma_{\mathbf{y}} - \max_{t \ge 0} |\sigma_i(t)| \right\}$$

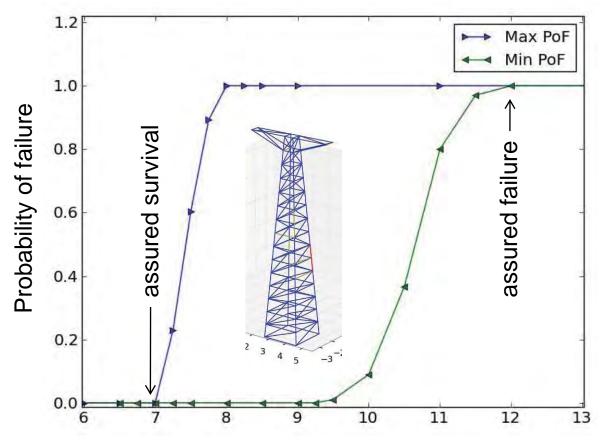


3D truss structure of power-line tower

- Assumptions on source term s(t):
 - Piecewise constant in time
 - Random amplitudes in [-a_{max}, a_{max}] (given by Richter magnitude M) with zero mean
 - Random time interval durations with bounded mean
- Assumptions on transfer function $\psi(t)$:
 - Piecewise linear in time
 - Random amplitudes with zero mean, bounded L² norm
- Reduced OUQ problem: Global optimization in 179 dimensions
- One PoF calculation takes O(24 hours) on O(1000) AMD opteron cluster



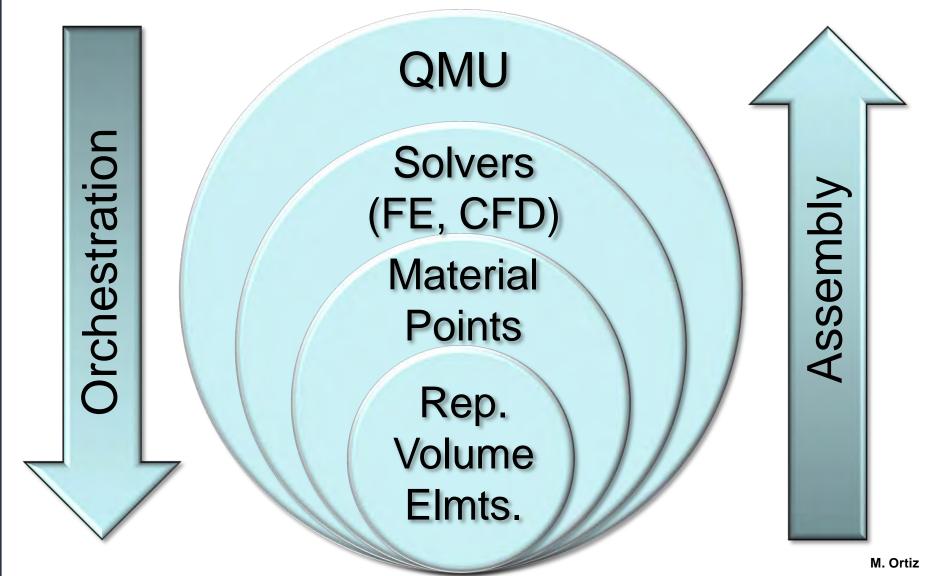
3D truss structure of power-line tower



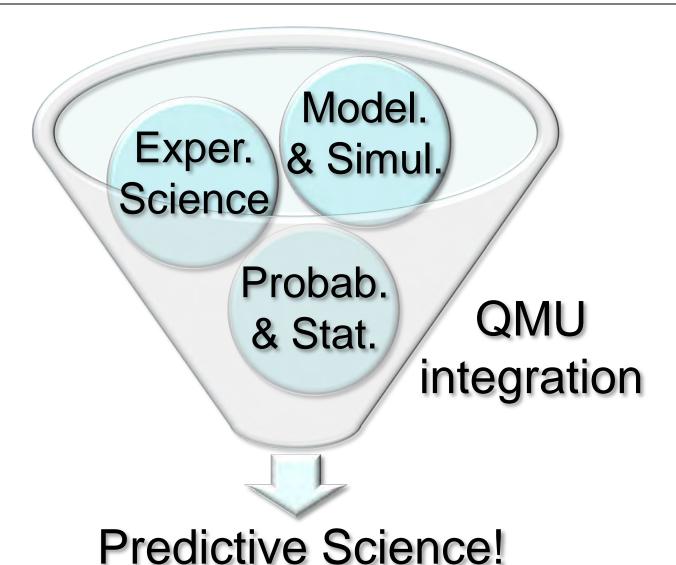
Richter-scale local magnitude M

Optimal PoF upper and lower bounds vs. Richter scale magnitude M at hypocentral distance R=25 km, with $a_{\rm max}$ given by Esteva's semi-empirical expression as a function of M

Concluding remarks – Systems view of Computational Mechanics...



Concluding remarks – Disciplinary view of QMU and Predictive Science



Concluding remarks...

